Déplacez-vous dans le calcul et la réalisation géométrique de petites catégories, explorant la relation entre les nerfs et les structures géométriques.
Démontre l'équivalence entre l'homologie simpliciale et singulière, prouvant les isomorphismes pour les complexes s finis et discutant de longues séquences exactes.
Couvre les premières propriétés de l'homologie singulière et la préservation des composants de décomposition et de chemin connectés dans les espaces topologiques.
Explore les interactions d'ordre supérieur dans les réseaux cérébraux en utilisant des complexes simpliciaux et la théorie de l'information, en analysant les données de l'IRMf, des séries chronologiques financières et des maladies infectieuses.