Concept

Hexacontaèdre pentagonal

Concepts associés (6)
Configuration de sommet
En géométrie, une configuration de sommet est une notation abrégée pour représenter la figure de sommet d'un polyèdre ou d'un pavage comme la séquence de faces autour d'un sommet. Pour les polyèdres uniformes, il n'y a qu'un seul type de sommet et, par conséquent, la configuration des sommets définit entièrement le polyèdre. (Les polyèdres chiraux existent dans des paires d'images miroir avec la même configuration de sommet). Une configuration de sommet est donnée sous la forme d'une suite de nombres représentant le nombre de côtés des faces faisant le tour du sommet.
Zonoèdre
Un zonoèdre est un polyèdre convexe où chaque face est un polygone ayant un centre de symétrie. Tout zonoèdre peut être décrit de manière équivalente comme la somme de Minkowski d'un ensemble de segments de droite dans un espace tridimensionnel, ou comme la projection tridimensionnelle d'un hypercube. Les zonoèdres ont été définis à l'origine et étudiés par Evgraf Fedorov, un cristallographe russe. La motivation originale pour l'étude des zonoèdres réside dans le fait que le diagramme de Voronoï d'un réseau quelconque forme un dans lequel les cellules sont des zonoèdres.
Solide de Catalan
thumb|Un dodécaèdre rhombique En mathématiques, un solide de Catalan ou dual archimédien, est un polyèdre dual d'un solide d'Archimède. Les solides de Catalan ont été nommés ainsi en l'honneur du mathématicien belge Eugène Catalan qui, en 1865, fut le premier à les étudier de manière systématique et les décrire et représenter avec soin et minutie. Les solides de Catalan sont tous convexes. Ils sont de faces uniformes mais non de sommets uniformes, en raison du fait que les duaux archimédiens sont de sommets uniformes et non de faces uniformes.
Regular icosahedron
In geometry, a regular icosahedron (ˌaɪkɒsəˈhiːdrən,-kə-,-koʊ- or aɪˌkɒsəˈhiːdrən) is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces. It has five equilateral triangular faces meeting at each vertex. It is represented by its Schläfli symbol {3,5}, or sometimes by its vertex figure as 3.3.3.3.3 or 35. It is the dual of the regular dodecahedron, which is represented by {5,3}, having three pentagonal faces around each vertex.
Hécatonicosachore
In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid. The boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. Together they form 720 pentagonal faces, 1200 edges, and 600 vertices.
Hexacosichore
En géométrie, l'hexacosichore ou « 600-cellules » est le 4-polytope régulier convexe qui a comme symbole de Schläfli {3, 3, 5}. Il est composé de 600 cellules tétraédriques dont 20 qui se rencontrent à chaque sommet. Ensemble, ils forment triangulaires, 720 arêtes et 120 sommets. Les arêtes forment 72 décagones réguliers plans. Chaque sommet du 600-cellules est le sommet de six de ces décagones.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.