Concepts associés (19)
Rapidité (relativité)
En relativité restreinte, la rapidité ou pseudo-vitesse est une mesure du mouvement. À faible vitesse, la rapidité et la vitesse sont égales (au coefficient multiplicateur c près), mais contrairement à la vitesse qui tend asymptotiquement vers la vitesse de la lumière, la rapidité continue à augmenter linéairement à l'infini. L'intérêt de la rapidité vient du fait que, de par son caractère linéaire, elle préserve la relation de la mécanique classique entre vitesse et accélération (un voyageur peut donc calculer sa rapidité en intégrant dans le temps, une mesure fournie par un accéléromètre).
Dilatation du temps
Le terme dilatation du temps désigne un effet de la relativité restreinte selon lequel l'intervalle de temps entre deux événements mesurés dans un référentiel inertiel quelconque est toujours supérieur à l'intervalle de temps mesuré dans le référentiel inertiel (en mouvement relatif au premier) où ces deux événements ont la même position spatiale mais n'ont pas lieu au même moment. Étant donné que le temps est défini, dans la théorie de la relativité, par la donnée initiale d'une horloge pour chaque référentiel, on peut en déduire que pour un observateur une horloge en mouvement semble ralentie par rapport à une horloge immobile.
Masse au repos
La masse au repos, masse propre ou encore masse invariante (par opposition à la masse relative ou masse relativiste, dépendante du référentiel), usuellement notée , est la masse inerte d'un corps dans un référentiel inertiel où il est au repos, ou d'un système physique dans un référentiel inertiel où son centre d'inertie est au repos. Elle est principalement utilisée en relativité restreinte et en physique des particules.
Temps propre
En théorie relativiste, on appelle temps propre τ d'un objet le temps mesuré dans « le » référentiel de cet objet, c'est-à-dire dans un référentiel où il est immobile. En relativité restreinte, l'intervalle de temps propre séparant deux événements est l'intervalle de temps les séparant dans un référentiel inertiel où ils ont lieu au même endroit de l'espace. En mécanique newtonienne, on décrit le mouvement d'un corps, dans un espace absolu, par rapport à un temps absolu.
Vecteur vitesse
Le vecteur vitesse, nommé parfois vélocité, est une notion de physique qui à la différence de la vitesse comprend un déplacement vers un point. Par exemple, une voiture a une vitesse de 60 km/h mais a une vélocité de 60 km/h vers le nord, le nord étant un point de référence ou de destination pour la voiture. Le terme vélocité est tiré des mots latins velocitas et velox signifiant respectivement rapidité, vitesse, et rapide, prompt, véloce, mots ayant eux-mêmes une origine obscure, mais supposé étant lié à la racine proto-indo-européenne wegh- signifiant "aller, bouger," et "transport dans un véhicule".
Mass in special relativity
The word "mass" has two meanings in special relativity: invariant mass (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy (also called total energy).
Longueur propre
En relativité restreinte, la longueur propre d'un corps est sa longueur mesurée dans un référentiel inertiel où il est immobile. Du fait de la contraction des longueurs, c'est la plus grande mesure que l'on puisse faire de ce corps dans un référentiel. La longueur propre ou longueur au repos d'un corps correspond à la longueur mesurée par un observateur inertiel au repos par rapport à ce corps, au moyen d'une règle ordinaire.
Diagramme de Minkowski
vignette|droite|Diagramme de Minkowski représentant un événement E avec ses coordonnées d'espace-temps (x,ct) dans un référentiel R, et celles (x', ct') dans un référentiel R' en déplacement par rapport au premier à la vitesse v ; ainsi qu'un des axes du cône de lumière, en rouge. L'unité des graduations sur les axes de R' sont notées 1' sur chacun. Le diagramme de Minkowski est une représentation de l'espace-temps développée en 1908 par Hermann Minkowski, permettant une visualisation des propriétés dans la théorie de la relativité restreinte.
Théorie de l'éther de Lorentz
La théorie de l'éther de Lorentz (également connue sous les appellations de « nouvelle mécanique », « électrodynamique de Lorentz », « théorie des électrons de Lorentz », « théorie de la relativité de Lorentz-Poincaré », en anglais : Lorentz ether theory, abrégé en LET) est le point final du développement du modèle de l'éther luminifère, milieu dans lequel des ondes lumineuses se propagent comme des ondes se propagent sur l’eau ou comme les ondes sonores dans la matière.
Contraction des longueurs
En relativité restreinte, la contraction des longueurs désigne la loi suivant laquelle la mesure de la longueur d'un objet en mouvement est diminuée par rapport à la mesure faite dans le référentiel où l'objet est immobile, du fait, notamment, de la relativité de la simultanéité d'un référentiel à l'autre. Toutefois, seule la mesure de la longueur parallèle à la vitesse est contractée, les mesures perpendiculaires à la vitesse ne changent pas d'un référentiel à l'autre. En relativité générale, une contraction des longueurs est aussi prédite.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.