Publications associées (41)

Efficient local linearity regularization to overcome catastrophic overfitting

Volkan Cevher, Grigorios Chrysos, Fanghui Liu, Elias Abad Rocamora

Catastrophic overfitting (CO) in single-step adversarial training (AT) results in abrupt drops in the adversarial test accuracy (even down to 0%). For models trained with multi-step AT, it has been observed that the loss function behaves locally linearly w ...
2024

Robust Collaborative Learning with Linear Gradient Overhead

Rachid Guerraoui, Nirupam Gupta, John Stephan, Sadegh Farhadkhani, Le Nguyen Hoang, Rafaël Benjamin Pinot

Collaborative learning algorithms, such as distributed SGD (or D-SGD), are prone to faulty machines that may deviate from their prescribed algorithm because of software or hardware bugs, poisoned data or malicious behaviors. While many solutions have been ...
PLMR2023

Layer-Wise Learning Framework for Efficient DNN Deployment in Biomedical Wearable Systems

David Atienza Alonso, Amir Aminifar, Tomas Teijeiro Campo, Alireza Amirshahi, Saleh Baghersalimi

The development of low-power wearable systems requires specialized techniques to accommodate their unique requirements and constraints. While significant advancements have been made in the inference phase of artificial intelligence, the training phase rema ...
2023

Contextual Stochastic Bilevel Optimization

Daniel Kuhn, Andreas Krause, Yifan Hu, Jie Wang

We introduce contextual stochastic bilevel optimization (CSBO) -- a stochastic bilevel optimization framework with the lower-level problem minimizing an expectation conditioned on some contextual information and the upper-level decision variable. This fram ...
2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.