AssociativitéEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne ou loi interne sur un ensemble E est dite associative si pour tous x, y et z dans E : En notant , l'associativité se traduit par le diagramme commutatif suivant : Parmi les lois associatives, on peut citer les lois d'addition et de multiplication des nombres réels, des nombres complexes et des matrices carrées, l'addition des vecteurs, et l'intersection, la réunion d'ensembles.
Opération (mathématiques)En mathématiques, une opération est un processus visant à obtenir un résultat à partir d'un ou plusieurs objets appelés opérandes. L'écriture d'une opération implique en général l'utilisation d'un symbole spécifique appelé opérateur. En arithmétique, les quatre opérations élémentaires (addition, soustraction, multiplication et division) sont suivies par le carré, le cube et plus généralement les opérations puissance, la racine carrée, l'exponentiation, la factorielle...
InverseEn mathématiques, l'inverse d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée multiplicativement. Dans le cas réel, il s'agit du nombre qui, multiplié par x, donne 1. On le note x ou 1/x. Par exemple, dans , l'inverse de 3 est , puisque . Soit un monoïde, un ensemble muni d'une loi de composition interne associative, qu'on note , et d'un élément neutre pour noté 1. Un élément est dit inversible à gauche (respectivement inversible à droite) s'il existe un élément tel que (respectivement ).
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Ordre des opérationsvignette|Ordre des opérations En mathématiques, la priorité des opérations ou ordre des opérations sont un ensemble de règles d'usage faisant consensus au sein de la communauté des mathématiciens. Elle précise l'ordre dans lequel les calculs doivent être effectués dans une expression complexe. Les règles de priorité sont : Les calculs entre parenthèses ou crochets sont prioritaires sur les calculs situés en dehors.
Signes plus et moinsLes signes plus (+) et moins (−) sont utilisés pour représenter les opérations d’addition et de soustraction dans une forme aujourd'hui reconnue internationalement. Ils peuvent avoir d’autres significations analogues, reconnues de manière généralement plus locale. Bien qu’aussi répandu que l’alphabet latin ou les chiffres indo-arabes leurs introduction est plus récente. Dans les hiéroglyphes égyptiens l’addition ressemble à une paire de jambes marchant dans la direction dans laquelle le texte a été écrit – dans le cas de l’Égypte antique, il était écrit de la droite vers la gauche.
OrdinateurUn ordinateur est un système de traitement de l'information programmable tel que défini par Alan Turing et qui fonctionne par la lecture séquentielle d'un ensemble d'instructions, organisées en programmes, qui lui font exécuter des opérations logiques et arithmétiques. Sa structure physique actuelle fait que toutes les opérations reposent sur la logique binaire et sur des nombres formés à partir de chiffres binaires.
Adding machineAn adding machine is a class of mechanical calculator, usually specialized for bookkeeping calculations. In the United States, the earliest adding machines were usually built to read in dollars and cents. Adding machines were ubiquitous office equipment until they were phased out in favor of calculators in the 1970s and by personal computers beginning in about 1985. The older adding machines were rarely seen in American office settings by the year 2000. Blaise Pascal and Wilhelm Schickard were the two original inventors of the mechanical calculator in 1642.
Additive identityIn mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x. One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings. The additive identity familiar from elementary mathematics is zero, denoted 0.
Arithmétique élémentaireL’arithmétique élémentaire regroupe les rudiments de la connaissance des nombres telle qu'elle est présentée dans l'enseignement des mathématiques. Elle commence avec la comptine numérique, autrement dit la suite des premiers entiers à partir de 1, apprise comme une liste ou une récitation et utilisée pour dénombrer de petites quantités. Viennent ensuite les opérations d'addition et de multiplication par le biais des tables d'addition et de multiplication.