Différence finieEn mathématiques, et plus précisément en analyse, une différence finie est une expression de la forme f(x + b) − f(x + a) (où f est une fonction numérique) ; la même expression divisée par b − a s'appelle un taux d'accroissement (ou taux de variation), et il est possible, plus généralement, de définir de même des différences divisées. L'approximation des dérivées par des différences finies joue un rôle central dans les méthodes des différences finies utilisées pour la résolution numérique des équations différentielles, tout particulièrement pour les problèmes de conditions aux limites.
Analyse non standardEn mathématiques, et plus précisément en analyse, l'analyse non standard est un ensemble d'outils développés depuis 1960 afin de traiter la notion d'infiniment petit de manière rigoureuse. Pour cela, une nouvelle notion est introduite, celle d'objet standard (s'opposant à celle d'objet non standard), ou plus généralement de modèle standard ou de modèle non standard. Cela permet de présenter les principaux résultats de l'analyse sous une forme plus intuitive que celle exposée traditionnellement depuis le .
Abraham RobinsonAbraham Robinson ( en Allemagne - aux États-Unis) est un mathématicien, logicien et un ingénieur en aérodynamique célèbre pour sa création de l’analyse non standard (1961), une théorie mathématique du calcul infinitésimal, qui rend rigoureux l'usage des infiniment petits et des infiniment grands introduit par Leibniz (vers 1690) et largement utilisé par Euler. La formalisation la plus usuelle du calcul infinitésimal, celle mise au point par les analystes du , évacue ces deux notions. Il reçoit la Médaille Brouwer en 1973.
Théorème fondamental de l'analyseEn mathématiques, le théorème fondamental de l'analyse (ou théorème fondamental du calcul différentiel et intégral) établit que les deux opérations de base de l'analyse, la dérivation et l'intégration, sont, dans une certaine mesure, réciproques l'une de l'autre. Il est constitué de deux familles d'énoncés (plus ou moins généraux selon les versions, et dépendant de la théorie de l'intégration choisie) : premier théorème : certaines fonctions sont « la dérivée de leur intégrale » ; second théorème : certaines fonctions sont « l'intégrale de leur dérivée ».
Infiniment petitLes infinitésimaux (ou infiniment petits) ont été utilisés pour exprimer l'idée d'objets si petits qu'il n'y a pas moyen de les voir ou de les mesurer. Le mot vient de infinitesimus (latin du ), ce qui signifiait à l'origine l'élément dans une série. Selon la notation de Leibniz, si x est une quantité, dx et Δx peuvent représenter une quantité infinitésimale de x. Dans le langage courant, un objet infiniment petit est un objet qui est plus petit que toute mesure possible, donc non pas d'une taille zéro, mais si petit qu'il ne peut être distingué de zéro par aucun moyen disponible.
Augustin Louis CauchyAugustin Louis, baron Cauchy, né à Paris le et mort à Sceaux le , est un mathématicien français, membre de l’Académie des sciences et professeur à l’École polytechnique. Catholique fervent, il est le fondateur de nombreuses œuvres charitables, dont l’Œuvre des Écoles d’Orient. Royaliste légitimiste, il s’exile volontairement lors de l'avènement de Louis-Philippe, après les Trois Glorieuses. Ses positions politiques et religieuses lui valurent nombre d’oppositions.