Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Explore les propriétés des endomorphismes et des automorphismes des groupes compacts locaux, en mettant l'accent sur l'invariance, la théorie de la représentation des arbres et les sous-groupes minimaux.
Couvre l'algèbre de Lie, les représentations de groupe, les groupes de symétrie et le lemme de Schur dans le contexte de la symétrie et des opérations de groupe.
Explore les endomorphismes et les automorphismes des groupes compacts locaux totalement déconnectés, en mettant l'accent sur les propriétés des groupes plats et des sous-groupes abeliens libres.