In mathematics, the complexification of a vector space V over the field of real numbers (a "real vector space") yields a vector space V^C over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers. Any basis for V (a space over the real numbers) may also serve as a basis for V^C over the complex numbers.
Let be a real vector space. The of V is defined by taking the tensor product of with the complex numbers (thought of as a 2-dimensional vector space over the reals):
The subscript, , on the tensor product indicates that the tensor product is taken over the real numbers (since is a real vector space this is the only sensible option anyway, so the subscript can safely be omitted). As it stands, is only a real vector space. However, we can make into a complex vector space by defining complex multiplication as follows:
More generally, complexification is an example of extension of scalars – here extending scalars from the real numbers to the complex numbers – which can be done for any field extension, or indeed for any morphism of rings.
Formally, complexification is a functor VectR → VectC, from the category of real vector spaces to the category of complex vector spaces. This is the adjoint functor – specifically the left adjoint – to the forgetful functor VectC → VectR forgetting the complex structure.
This forgetting of the complex structure of a complex vector space is called (or sometimes ""). The decomplexification of a complex vector space with basis removes the possibility of complex multiplication of scalars, thus yielding a real vector space of twice the dimension with a basis
By the nature of the tensor product, every vector v in V^C can be written uniquely in the form
where v1 and v2 are vectors in V. It is a common practice to drop the tensor product symbol and just write
Multiplication by the complex number a + i b is then given by the usual rule
We can then regard V^C as the direct sum of two copies of V:
with the above rule for multiplication by complex numbers.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
The students will learn key numerical techniques for solving standard mathematical problems in science and engineering. The underlying mathematical theory and properties are discussed.
En mathématiques, diverses versions de théorèmes de Frobenius généralisés ont étendu progressivement le théorème de Frobenius de 1877. Ce sont des théorèmes d'algèbre générale qui classifient les algèbres unifères à division de dimension finie sur le corps commutatif R des réels. Moyennant certaines restrictions, il n'y en a que quatre : R lui-même, C (complexes), H (quaternions) et O (octonions). Toutes les algèbres sont ici implicitement supposées unifères, et leur unicité s'entend à isomorphisme près.
En mathématiques, les algèbres de composition sur un corps commutatif sont des structures algébriques qui généralisent simultanément le corps des nombres complexes, le corps non commutatif des quaternions de Hamilton et l'algèbre des octonions de Cayley. Dans cet article, on note K un corps commutatif (de caractéristique quelconque), et les algèbres ne sont pas supposées être associatives ni – a priori du moins – de dimension finie.
En mathématiques, un biquaternion (ou quaternion complexe) est un élément de l'algèbre des quaternions sur les nombres complexes. Le concept d'un biquaternion fut mentionné la première fois par William Rowan Hamilton au . William Kingdon Clifford utilisa le même nom à propos d'une algèbre différente. biquaternion de Clifford Il y a aussi une autre notion de biquaternions, distincte : une algèbre de biquaternions sur un corps commutatif K est une algèbre qui est isomorphe au produit tensoriel de deux algèbres de quaternions sur K (sa dimension est 16 sur K, et non pas 8 sur R).
Conjugation spaces are topological spaces equipped with an involution such that their fixed points have the same mod 2 cohomology (as a graded vector space, a ring and even an unstable algebra) but with all degrees divided by two, generalizing the classica ...
Conjugation spaces are equipped with an involution such that the fixed points have the same mod 2 cohomology (as a graded vector space, a ring, and even an unstable algebra) but with all degrees divided by 2, generalizing the classical examples of complex ...
WILEY2021
, ,
Five-membered nitrogen-containing heterocyclic compounds (azoles) belong to potential moieties in complex structures where transformations during ozonation can occur. This study focused on the azole-ozone chemistry of pyrrole, imidazole, and pyrazole as mo ...