In mathematics, the complexification of a vector space V over the field of real numbers (a "real vector space") yields a vector space V^C over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers. Any basis for V (a space over the real numbers) may also serve as a basis for V^C over the complex numbers. Let be a real vector space. The of V is defined by taking the tensor product of with the complex numbers (thought of as a 2-dimensional vector space over the reals): The subscript, , on the tensor product indicates that the tensor product is taken over the real numbers (since is a real vector space this is the only sensible option anyway, so the subscript can safely be omitted). As it stands, is only a real vector space. However, we can make into a complex vector space by defining complex multiplication as follows: More generally, complexification is an example of extension of scalars – here extending scalars from the real numbers to the complex numbers – which can be done for any field extension, or indeed for any morphism of rings. Formally, complexification is a functor VectR → VectC, from the category of real vector spaces to the category of complex vector spaces. This is the adjoint functor – specifically the left adjoint – to the forgetful functor VectC → VectR forgetting the complex structure. This forgetting of the complex structure of a complex vector space is called (or sometimes ""). The decomplexification of a complex vector space with basis removes the possibility of complex multiplication of scalars, thus yielding a real vector space of twice the dimension with a basis By the nature of the tensor product, every vector v in V^C can be written uniquely in the form where v1 and v2 are vectors in V. It is a common practice to drop the tensor product symbol and just write Multiplication by the complex number a + i b is then given by the usual rule We can then regard V^C as the direct sum of two copies of V: with the above rule for multiplication by complex numbers.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
MATH-251(b): Numerical analysis
The students will learn key numerical techniques for solving standard mathematical problems in science and engineering. The underlying mathematical theory and properties are discussed.
Séances de cours associées (22)
Principes de la physique quantique
Couvre les principes de la physique quantique, se concentrant sur les espaces de produits tensor et les vecteurs enchevêtrés.
Correction d'erreur
Couvre la correction d'erreur dans le calcul quantique en utilisant les codes Hamming et le décodage du syndrome.
Diagonalisation des matrices symétriques
Explore la diagonalisation des matrices symétriques et de leurs valeurs propres, en mettant l'accent sur les propriétés orthogonales.
Afficher plus
Publications associées (4)

Realizing doubles: a conjugation zoo

Jérôme Scherer

Conjugation spaces are topological spaces equipped with an involution such that their fixed points have the same mod 2 cohomology (as a graded vector space, a ring and even an unstable algebra) but with all degrees divided by two, generalizing the classica ...
CAMBRIDGE UNIV PRESS2021

Conjugation spaces are cohomologically pure

Jérôme Scherer

Conjugation spaces are equipped with an involution such that the fixed points have the same mod 2 cohomology (as a graded vector space, a ring, and even an unstable algebra) but with all degrees divided by 2, generalizing the classical examples of complex ...
WILEY2021

Reactions of pyrrole, imidazole, and pyrazole with ozone: kinetics and mechanisms

Urs von Gunten, Peter Rudolf Tentscher, Sung Eun Lim

Five-membered nitrogen-containing heterocyclic compounds (azoles) belong to potential moieties in complex structures where transformations during ozonation can occur. This study focused on the azole-ozone chemistry of pyrrole, imidazole, and pyrazole as mo ...
ROYAL SOC CHEMISTRY2020
Afficher plus
Personnes associées (1)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.