Résumé
Source separation, blind signal separation (BSS) or blind source separation, is the separation of a set of source signals from a set of mixed signals, without the aid of information (or with very little information) about the source signals or the mixing process. It is most commonly applied in digital signal processing and involves the analysis of mixtures of signals; the objective is to recover the original component signals from a mixture signal. The classical example of a source separation problem is the cocktail party problem, where a number of people are talking simultaneously in a room (for example, at a cocktail party), and a listener is trying to follow one of the discussions. The human brain can handle this sort of auditory source separation problem, but it is a difficult problem in digital signal processing. This problem is in general highly underdetermined, but useful solutions can be derived under a surprising variety of conditions. Much of the early literature in this field focuses on the separation of temporal signals such as audio. However, blind signal separation is now routinely performed on multidimensional data, such as and tensors, which may involve no time dimension whatsoever. Several approaches have been proposed for the solution of this problem but development is currently still very much in progress. Some of the more successful approaches are principal components analysis and independent component analysis, which work well when there are no delays or echoes present; that is, the problem is simplified a great deal. The field of computational auditory scene analysis attempts to achieve auditory source separation using an approach that is based on human hearing. The human brain must also solve this problem in real time. In human perception this ability is commonly referred to as auditory scene analysis or the cocktail party effect. Cocktail party effect At a cocktail party, there is a group of people talking at the same time. You have multiple microphones picking up mixed signals, but you want to isolate the speech of a single person.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (2)
Analyse en composantes indépendantes
L'analyse en composantes indépendantes (en anglais, independent component analysis ou ICA) est une méthode d'analyse des données (voir aussi Exploration de données) qui relève des statistiques, des réseaux de neurones et du traitement du signal. Elle est notoirement et historiquement connue en tant que méthode de séparation aveugle de source mais a par suite été appliquée à divers problèmes. Les contributions principales ont été rassemblées dans un ouvrage édité en 2010 par P.Comon et C.Jutten.
Analyse en composantes principales
L'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.