Concept

Décomposition en valeurs singulières

En mathématiques, le procédé d'algèbre linéaire de décomposition en valeurs singulières (ou SVD, de l'anglais singular value decomposition) d'une matrice est un outil important de factorisation des matrices rectangulaires réelles ou complexes. Ses applications s'étendent du traitement du signal aux statistiques, en passant par la météorologie. Le théorème spectral énonce qu'une matrice normale peut être diagonalisée par une base orthonormée de vecteurs propres. On peut voir la décomposition en valeurs singulières comme une généralisation du théorème spectral à des matrices arbitraires, qui ne sont pas nécessairement carrées. Soit M une matrice m×n dont les coefficients appartiennent au corps K, où K = R ou K = C. Alors il existe une factorisation de la forme : avec U une matrice unitaire m×m sur K, Σ une matrice m×n dont les coefficients diagonaux sont des réels positifs ou nuls et tous les autres sont nuls, et V* est la matrice adjointe à V, matrice unitaire n×n sur K. On appelle cette factorisation la décomposition en valeurs singulières de M.thumb|right | 280px | Décomposition en valeurs singulières dans le cas d'une matrice réelle à 2 dimensions M. Cette transformation déforme, par exemple, un cercle unitaire bleu ci-dessus à gauche en une ellipse dans le coin supérieur droit de l'image. La transformation M peut alors être décomposée en une rotation V* suivie d'une compression ou étirement Σ le long des axes de coordonnées suivie en fin d'une nouvelle rotation U. Les valeurs singulières σ1 et σ2 correspondent aux longueurs des grand et petit axes de l'ellipse. La matrice V contient un ensemble de vecteurs de base orthonormés de Kn, dits « d'entrée » ou « d'analyse » ; La matrice U contient un ensemble de vecteurs de base orthonormés de Km, dits « de sortie » ; La matrice Σ contient dans ses coefficients diagonaux les valeurs singulières de la matrice M, elles correspondent aux racines des valeurs propres de . Une convention courante est de ranger les valeurs Σi,i par ordre décroissant.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
Afficher plus
Séances de cours associées (220)
Apprentissage non supervisé : recommandation de film
Couvre l'apprentissage non supervisé pour la recommandation de films en utilisant la décomposition des valeurs singulières.
Formule du caractère de la weyl
Explore la preuve de la formule de caractère de Weyl pour les représentations tridimensionnelles des algèbres semi-simples de Lie.
Décomposition de la valeur singulaire
Explore la Décomposition de la Valeur Singulière et son rôle dans l'apprentissage non supervisé et la réduction de dimensionnalité, en mettant l'accent sur ses propriétés et applications.
Afficher plus
Publications associées (304)

Non-negative matrix factorization-aided phase unmixing and trace element quantification of STEM-EDXS data

Cécile Hébert, Duncan Thomas Lindsay Alexander, James Badro, Farhang Nabiei, Hui Chen

Energy-dispersive X-ray spectroscopy (EDXS) mapping with a scanning transmission electron microscope (STEM) is commonly used for chemical characterization of materials. However, STEM-EDXS quantification becomes challenging when the phases constituting the ...
Elsevier2024

Non-normal forms

Yves-Marie François Ducimetière

In this thesis, we propose to formally derive amplitude equations governing the weakly nonlinear evolution of non-normal dynamical systems, when they respond to harmonic or stochastic forcing, or to an initial condition. This approach reconciles the non-mo ...
EPFL2024

Hybrid ground-state quantum algorithms based on neural Schrödinger forging

Giuseppe Carleo, Sofia Vallecorsa

Entanglement forging based variational algorithms leverage the bipartition of quantum systems for addressing ground-state problems. The primary limitation of these approaches lies in the exponential summation required over the numerous potential basis stat ...
Amer Physical Soc2024
Afficher plus
Concepts associés (48)
Matrice (mathématiques)
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Analyse en composantes principales
L'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Décomposition d'une matrice en éléments propres
En algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Afficher plus
MOOCs associés (10)
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.