Varimax rotationIn statistics, a varimax rotation is used to simplify the expression of a particular sub-space in terms of just a few major items each. The actual coordinate system is unchanged, it is the orthogonal basis that is being rotated to align with those coordinates. The sub-space found with principal component analysis or factor analysis is expressed as a dense basis with many non-zero weights which makes it hard to interpret. Varimax is so called because it maximizes the sum of the variances of the squared loadings (squared correlations between variables and factors).
Tensor rank decompositionIn multilinear algebra, the tensor rank decomposition or the decomposition of a tensor is the decomposition of a tensor in terms of a sum of minimum tensors. This is an open problem. Canonical polyadic decomposition (CPD) is a variant of the rank decomposition which computes the best fitting terms for a user specified . The CP decomposition has found some applications in linguistics and chemometrics. The CP rank was introduced by Frank Lauren Hitchcock in 1927 and later rediscovered several times, notably in psychometrics.
Analyse des correspondances multiplesL’analyse des correspondances multiples (ACM) est une méthode d'analyse factorielle adaptée aux données qualitatives (aussi appelées catégorielles). Elle permet d'étudier plus de deux variables contrairement à l'analyse factorielle des correspondances (AFC). Un exemple typique de données utilisées en ACM est celui des enquêtes d’opinion. L'ACM permet d'étudier le lien entre ces variables par l'intermédiaire d'un tableau disjonctif complet (TDC) ou du tableau de Burt (TB).
Algorithme de LanczosEn algèbre linéaire, l’algorithme de Lanczos (ou méthode de Lanczos) est un algorithme itératif pour déterminer les valeurs et vecteurs propres d'une matrice carrée, ou la décomposition en valeurs singulières d'une matrice rectangulaire. Cet algorithme n'a pas de lien avec le fenêtrage de Lanczos (utilisé par exemple pour le redimensionnement d'images), si ce n'est que tous les deux tirent leur nom du même inventeur, le physicien et mathématicien hongrois Cornelius Lanczos.
Quotient de RayleighEn mathématiques, pour une matrice hermitienne A et un vecteur x non nul, le quotient de Rayleigh est l’expression scalaire définie par où x désigne le vecteur adjoint de x. Pour une matrice symétrique à coefficients réels, le vecteur x est simplement son transposé x. Dans les deux cas, le quotient de Rayleigh fournit une valeur réelle qui renseigne sur le spectre de la matrice par les deux propriétés fondamentales suivantes : il atteint un point critique (extremum ou point-selle) au voisinage des vecteurs propres de la matrice ; appliqué à un vecteur propre, le quotient de Rayleigh fournit la valeur propre correspondante.
Weka (informatique)Weka (acronyme pour Waikato environment for knowledge analysis, en français : « environnement Waikato pour l'analyse de connaissances ») est une suite de logiciels d'apprentissage automatique écrite en Java et développée à l'université de Waikato en Nouvelle-Zélande. Weka est un logiciel libre disponible sous la Licence publique générale GNU (GPL). L'espace de travail Weka contient une collection d'outils de visualisation et d'algorithmes pour l'analyse des données et la modélisation prédictive, allié à une interface graphique pour un accès facile de ses fonctionnalités.
Total least squaresIn applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models. The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm, low-rank approximation of the data matrix.
Ordination (statistics)Ordination or gradient analysis, in multivariate analysis, is a method complementary to data clustering, and used mainly in exploratory data analysis (rather than in hypothesis testing). In contrast to cluster analysis, ordination orders quantities in a (usually lower-dimensional) latent space. In the ordination space, quantities that are near each other share attributes (i.e., are similar to some degree), and dissimilar objects are farther from each other.