S'intéresse à la vérification de type, à la reconstruction, aux équations, à l'unification, au système Hindley/Milner, au polymorphisme et aux principaux types.
Explore l'isomorphisme de Kerry Howard, traduisant des propositions logiques en types et en termes, en mettant l'accent sur la preuve par induction et la préparation à l'examen.
Explore le sous-typage, le calcul de type et le calcul de limites de type dans un système avec sous-typage, guidant à travers des exercices et des preuves étape par étape.
Couvre les types polymorphes dans Amy, y compris les règles Hindley-Milner, les schémas de type, l'instanciation et la gestion des variables de type dans les fonctions.