AmplitudeEn physique classique, on nomme amplitude la mesure scalaire (une coordonnée) d’un nombre positif caractérisant l’ampleur des variations d'une grandeur. Le plus souvent il s'agit de l'écart maximal par rapport à la valeur médiane (qui est aussi la valeur moyenne si la variation est symétrique). Cette définition diffère du langage courant, dans lequel l'amplitude désigne généralement l'écart entre les valeurs extrêmes d'une grandeur.
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Fréquence fondamentaleEn acoustique musicale, la fréquence fondamentale est l'inverse de la période d'un son complexe. Cette fréquence détermine la hauteur du son musical. Un son est une vibration de l'air. Cette vibration peut souvent s'assimiler à un phénomène périodique ; c'est le cas notamment des sons de voyelles émis par la voix humaine et de tous les instruments capables de produire une note de musique. Un phénomène périodique se caractérise par sa période, qui est la durée qui se reproduit identiquement lorsqu'on se décale dans le temps de cette même durée.
Densité spectrale de puissanceOn définit la densité spectrale de puissance (DSP en abrégé, Power Spectral Density ou PSD en anglais) comme étant le carré du module de la transformée de Fourier, divisé par le temps d'intégration, (ou, plus rigoureusement, la limite quand tend vers l'infini de l'espérance mathématique du carré du module de la transformée de Fourier du signal - on parle alors de densité spectrale de puissance moyenne).
Signal électriquevignette|Signaux électriques sur l'écran d'un oscilloscope : signal rectanglaire (haut), signal harmonique ou sinusoïdal (bas). Un signal électrique est une grandeur électrique dont la variation dans le temps transporte une information, d'une source à une destination. La grandeur électrique que l'on considère pour la transmission et le traitement du signal peut être directement la différence de potentiel ou l'intensité d'un courant électrique ; ou bien une modulation de l'amplitude, de la fréquence ou de la phase d'une variation périodique de ces grandeurs, qu'on appelle porteuse ; dans les communications numériques par modem des règles complexes régissent la modulation afin d'occuper au mieux la largeur de bande allouée.
Periodic summationIn mathematics, any integrable function can be made into a periodic function with period P by summing the translations of the function by integer multiples of P. This is called periodic summation: When is alternatively represented as a Fourier series, the Fourier coefficients are equal to the values of the continuous Fourier transform, at intervals of . That identity is a form of the Poisson summation formula. Similarly, a Fourier series whose coefficients are samples of at constant intervals (T) is equivalent to a periodic summation of which is known as a discrete-time Fourier transform.
Symétrie de translationLa symétrie de translation ou invariance sous les translations est le nom que l'on donne au fait que les lois de la physique (les lois sur la gravité de Newton, sur l'électromagnétisme de Maxwell, sur la relativité d'Einstein) s'écrivent de la même façon en tout point de l'espace. Il y a brisure de symétrie lorsqu'un système ne possède pas la symétrie de translation On peut donner une explication plus précise. Prenons d'abord l'exemple de la loi de la gravitation de Newton. On prend un référentiel de référence qu'on appelle .
Formule d'EulerLa formule d'Euler est une égalité mathématique, attribuée au mathématicien suisse Leonhard Euler. Elle s'écrit, pour tout nombre réel x, et se généralise aux x complexes. Ici, le nombre e est la base des logarithmes naturels, i est l'unité imaginaire, sin et cos sont des fonctions trigonométriques. Cette formule peut être interprétée en disant que la fonction x ↦ e, appelée fonction cis, décrit le cercle unité dans le plan complexe lorsque x varie dans l'ensemble des nombres réels.
ExponentiationEn mathématiques, l’exponentiation est une opération binaire non commutative qui étend la notion de puissance d'un nombre en algèbre. Elle se note en plaçant l'un des opérandes en exposant (d'où son nom) de l'autre, appelé base. Pour des exposants rationnels, l'exponentiation est définie algébriquement de façon à satisfaire la relation : Pour des exposants réels, complexes ou matriciels, la définition passe en général par l'utilisation de la fonction exponentielle, à condition que la base admette un logarithme : L'exponentiation ensembliste est définie à l'aide des ensembles de fonctions : Elle permet de définir l'exponentiation pour les cardinaux associés.