Graphe symétriqueEn théorie des graphes, un graphe non orienté G=(V,E) est symétrique (ou arc-transitif) si, étant donné deux paires quelconques de sommets reliés par une arête u1—v1 et u2—v2 de G, il existe un automorphisme de graphe : tel que et . En d'autres termes, un graphe est symétrique si son groupe d'automorphismes agit transitivement sur ses paires ordonnées de sommets reliés. Un tel graphe est parfois appelé 1-arc-transitif. Par définition, un graphe symétrique sans sommet isolé est sommet-transitif et arête-transitif.
Graphe de CoxeterEn théorie des graphes, le graphe de Coxeter est un graphe cubique symétrique à 28 sommets et 42 arêtes. Il est nommé en l'honneur de H.S.M. Coxeter qui l'appelait « My graph ». Le diamètre du graphe de Coxeter, l'excentricité maximale de ses sommets, est 4, son rayon, l'excentricité minimale de ses sommets, est 4 et sa maille, la longueur de son plus court cycle, est 7. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes.
Hypercube (graphe)Les hypercubes, ou n-cubes, forment une famille de graphes. Dans un hypercube , chaque sommet porte une étiquette de longueur sur un alphabet , et deux sommets sont adjacents si leurs étiquettes ne diffèrent que d'un symbole. C'est le graphe squelette de l'hypercube, un polytope n-dimensionnel, généralisant la notion de carré (n = 2) et de cube (n = 3). Dans les années 1980, des ordinateurs furent réalisés avec plusieurs processeurs connectés selon un hypercube : chaque processeur traite une partie des données et ainsi les données sont traitées par plusieurs processeurs à la fois, ce qui constitue un calcul parallèle.
Graphe distance-régulierEn théorie des graphes, un graphe régulier est dit distance-régulier si pour tous sommets distants de , et pour tous entiers naturels , il y a toujours le même nombre de sommets qui sont à la fois à distance de et à distance de . De manière équivalente, un graphe est distance-régulier si pour tous sommets , le nombre de sommets voisins de à distance de et le nombre de sommets voisins de à distance de ne dépendent que de et de la distance entre et . Formellement, tels que et où est l’ensemble des sommets à distance de , et .
Graphe de HeawoodEn théorie des graphes, le graphe de Heawood est un graphe cubique symétrique possédant 14 sommets et 21 arêtes. Il doit son nom à Percy John Heawood, un mathématicien britannique né en 1861 et mort en 1955. Le graphe de Heawood est une (3,6)-cage, c'est-à-dire un graphe minimal en nombres de sommets ayant une maille de 6 et étant cubique. En fait, il s'agit de l'unique (3,6)-cage et sa taille coïncide avec la borne de Moore, une borne inférieure sur le nombre de sommets que peut avoir une cage.
Graphe fortement régulierEn théorie des graphes, qui est un domaine des mathématiques, un graphe fortement régulier est un type de graphe régulier. Soit G = (V,E) un graphe régulier ayant v sommets et degré k. On dit que G est fortement régulier s'il existe deux entiers λ et μ tels que Toute paire de sommets adjacents a exactement λ voisins communs. Toute paire de sommets non-adjacents a exactement μ voisins communs. Un graphe avec ces propriétés est appelé un graphe fortement régulier de type (v,k,λ,μ).
Graphe cubiqueEn théorie des graphes, une branche des mathématiques, un graphe cubique est un graphe régulier de degré 3. En d'autres termes, c'est un graphe dans lequel il y a exactement trois arêtes incidentes à chaque sommet. Le graphe complet K4 est le plus petit graphe cubique. Le graphe biparti complet K3,3 est le plus petit graphe cubique non-planaire. Le graphe de Petersen est le plus petit graphe cubique de maille 5. Le graphe de Heawood est le plus petit graphe cubique de maille 6.
Graphe de DesarguesEn théorie des graphes, le graphe de Desargues est un graphe cubique symétrique possédant 20 sommets et 30 arêtes. Il doit son nom à Girard Desargues. Le graphe de Desargues est isomorphe au graphe biparti de Kneser et au graphe généralisé de Petersen GP(10,3). C'est aussi le graphe d'incidence de la configuration de Desargues. Le graphe de Desargues est hamiltonien et peut être décrit par la notation LCF : [5, −5, 9, −9]5.
Automorphisme de graphevignette|On peut définir deux automorphismes sur le graphe maison : l'identité et la permutation qui échange les deux « murs » de la « maison ». En mathématiques et en particulier en théorie des graphes, un automorphisme de graphe est une bijection de l'ensemble des sommets vers lui-même qui préserve l'ensemble des arêtes. On peut voir l'automorphisme de graphes comme un isomorphisme de graphes du graphe dans lui-même. On peut en général s'arranger pour mettre en évidence visuellement les automorphismes de graphes sous forme de symétries dans le tracé du graphe.
Graphe de PetersenLe graphe de Petersen est, en théorie des graphes, un graphe particulier possédant et . Il s'agit d'un petit graphe qui sert d'exemple et de contre-exemple pour plusieurs problèmes de la théorie des graphes. Il porte le nom du mathématicien Julius Petersen, qui l'introduisit en 1898 en tant que plus petit graphe cubique sans isthme dont les arêtes ne peuvent être colorées avec trois couleurs. Il a cependant été mentionné par Alfred Kempe pour la première fois auparavant, en 1886.