Graphe de HammingLes graphes de Hamming forment une famille de graphes. Le graphe de Hamming de dimension d sur un alphabet de taille q est défini de la manière suivante : est le graphe dont les sommets sont , l'ensemble des mots de longueur sur un alphabet , où . Deux sommets sont adjacents dans s'ils sont à une distance de Hamming de 1, c'est-à-dire si leurs étiquettes ne diffèrent que d'un symbole. On peut construire le graphe de Hamming directement en appliquant sa définition : disposons sommets, chacun avec une étiquette .
Maille (théorie des graphes)En théorie des graphes, la maille d'un graphe est la longueur du plus court de ses cycles. Un graphe acyclique est généralement considéré comme ayant une maille infinie (ou, pour certains auteurs, une maille de −1). La maille d'un graphe est la longueur du plus court de ses cycles. Image:Petersen graph blue.svg|Le [[graphe de Petersen]] a une maille de 5 et est une cage. Image:Heawood_Graph.svg|Le [[graphe de Heawood]] a une maille de 6 et est une cage. Image:Frucht_graph.neato.
Odd graphIn the mathematical field of graph theory, the odd graphs are a family of symmetric graphs with high odd girth, defined from certain set systems. They include and generalize the Petersen graph. The odd graph has one vertex for each of the -element subsets of a -element set. Two vertices are connected by an edge if and only if the corresponding subsets are disjoint. That is, is the Kneser graph . is a triangle, while is the familiar Petersen graph. The generalized odd graphs are defined as distance-regular graphs with diameter and odd girth for some .
Graphe (mathématiques discrètes)Dans le domaine des mathématiques discrètes, la théorie des graphes définit le graphe, une structure composée d'objets et de relations entre deux de ces objets. Abstraitement, lesdits objets sont appelés sommets (ou nœuds ou points), et les relations entre eux sont nommées arêtes (ou liens ou lignes). On distingue les graphes non orientés, où les arêtes relient deux sommets de manière symétrique, et les graphes orientés, où les arêtes, alors appelées arcs (ou flèches), relient deux sommets de manière asymétrique.
Graphe de NauruEn mathématiques, et plus précisément en théorie des graphes, le graphe de Nauru est un graphe 3-régulier possédant 24 sommets et 36 arêtes. Il a été nommé ainsi par David Eppstein d'après l'étoile à 12 branches ornant le drapeau de Nauru. Le diamètre du graphe de Nauru, l'excentricité maximale de ses sommets, est 4, son rayon, l'excentricité minimale de ses sommets, est 4 et sa maille, la longueur de son plus court cycle, est 6.
CubeEn géométrie euclidienne, un cube est un prisme droit dont toutes les faces sont carrées donc égales et superposables. Le cube figure parmi les solides les plus remarquables de l'espace. C'est le seul des cinq solides de Platon ayant exactement 6 faces, 12 arêtes et 8 sommets. Son autre nom est « hexaèdre régulier ». Le cube est un zonoèdre à trois générateurs. Comme il a quatre sommets par face et trois faces par sommet, son symbole de Schläfli est {4,3}. L'étymologie du mot cube est grecque ; cube provient de kubos, le dé.