Validité (logique)En logique, la validité est la manière dont les prémisses et la conclusion concordent logiquement dans les arguments réussis. La forme d'une argumentation déductive est dite valide si et seulement si elle utilise des règles d’inférence par lesquelles il est impossible d’obtenir une conclusion fausse à partir de prémisses vraies. Un argument est valide si et seulement si la vérité de ses prémisses entraîne celle de sa conclusion. Il serait contradictoire d'affirmer les prémisses et de nier la conclusion.
Porte logiquevignette|Composants TTL Une porte logique (gate) est un circuit électronique réalisant des opérations logiques (booléennes) sur une séquence de bits. Cette séquence est donnée par un signal d'entrée modulé en créneau (signal carré), et cadencé de façon précise par un circuit d'horloge, ou quartz. Les opérations logiques sont réalisées électriquement par une combinaison de bascules ou inverseurs, à base de transistors. Étant donné les capacités d'intégration en électronique, un circuit intégré comporte généralement plusieurs portes à la fois.
Logique classiqueLa logique classique est la première formalisation du langage et du raisonnement mathématique développée à partir de la fin du en logique mathématique. Appelée simplement logique à ses débuts, c'est l'apparition d'autres systèmes logiques formels, notamment de la logique intuitionniste, qui a suscité l'adjonction de l'adjectif classique au terme logique. À cette époque, le terme de logique classique fait référence à la logique aristotélicienne.
Truth functionIn logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly one truth value; and inputting the same truth value(s) will always output the same truth value.
Calcul des prédicatsEn logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .
Fonction booléennevignette|Arbre de décision binaire Une fonction booléenne est une fonction prenant en entrée une liste de bits et donnant en sortie un unique bit. Les fonctions booléennes sont très utilisées en informatique théorique, notamment en théorie de la complexité et en cryptologie (par exemple dans les boîtes-S et les chiffrements par flot -- fonction de filtrage ou de combinaison de registres à décalage à rétroaction linéaire). Une fonction booléenne est une fonction de dans où désigne le corps fini à 2 éléments.
Déduction logiqueLa déduction logique est un type de relation que l'on rencontre en logique mathématique. Elle relie des propositions dites prémisses à une proposition dite conclusion et préserve la vérité. Prémisses et conclusion qui sont ainsi reliées par une règle de déduction, assurent que si la règle est valide et si les prémisses sont vraies, la conclusion est elle aussi vraie. On dit alors que la conclusion est une conséquence des prémisses, ou parfois que la conclusion vient des prémisses.
DistributivitéEn mathématiques, plus précisément en arithmétique et en algèbre générale, la distributivité d'une opération par rapport à une autre est une généralisation de la propriété élémentaire : « le produit d'une somme est égal à la somme des produits ». Par exemple, dans l'expression 2 × (5 + 3) = (2×5) + (2×3), le facteur 2 est distribué à chacun des deux termes de la somme 5 + 3. L'égalité est alors bien vérifiée : à gauche 2 × 8 = 16, à droite 10 + 6 = 16.
If and only ifIn logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.
Intersection (mathématiques)Dans la théorie des ensembles, l'intersection est une opération ensembliste qui porte le même nom que son résultat, à savoir l'ensemble des éléments appartenant à la fois aux deux opérandes : l'intersection de deux ensembles A et B est l'ensemble, noté , dit « A inter B », qui contient tous les éléments appartenant à la fois à A et à B, et seulement ceux-là. A et B sont disjoints si et seulement si est l'ensemble vide ∅. A est inclus dans B si et seulement si .