Théorème de représentation de Riesz (Fréchet-Riesz)En mathématiques, plus précisément en analyse fonctionnelle, le théorème de représentation de Riesz, en l'honneur du mathématicien Frigyes Riesz, est un théorème qui représente les éléments du dual d'un espace de Hilbert comme produit scalaire par un vecteur de l'espace. Ce théorème est aussi parfois appelé théorème de Fréchet-Riesz (à ne pas confondre avec le théorème de Riesz-Fréchet-Kolmogorov). Il s'apparente singulièrement au théorème de Lax-Milgram qui englobe l'énoncé ci-dessous.
Row and column vectorsIn linear algebra, a column vector with m elements is an matrix consisting of a single column of m entries, for example, Similarly, a row vector is a matrix for some n, consisting of a single row of n entries, (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: and The set of all row vectors with n entries in a given field (such as the real numbers) forms an n-dimensional vector space; similarly, the set of all column vectors with m entries forms an m-dimensional vector space.
Base dualeEn algèbre linéaire, la base duale est une base de l'espace dual E* d'un espace vectoriel E de dimension finie, construite à partir d'une base de E. Il est rappelé que E* est l'espace des formes linéaires sur E. La réduction des formes quadratiques est un exemple dans lequel les bases duales peuvent intervenir. Elles interviennent aussi pour transporter des structures géométriques d'un espace vectoriel réel ou complexe sur son espace dual, ce qui intervient notamment en géométrie différentielle.
Antilinear mapIn mathematics, a function between two complex vector spaces is said to be antilinear or conjugate-linear if hold for all vectors and every complex number where denotes the complex conjugate of Antilinear maps stand in contrast to linear maps, which are additive maps that are homogeneous rather than conjugate homogeneous. If the vector spaces are real then antilinearity is the same as linearity.
Application transposéeEn mathématiques et plus précisément en algèbre linéaire, l'application transposée d'une application linéaire entre deux espaces vectoriels est l'application entre leurs duals définie par : ou encore, si est le crochet de dualité de : La forme linéaire résultante est nommée application transposée de le long de . Cette définition se généralise à des K-modules à droite sur un anneau (non nécessairement commutatif), en se souvenant que le dual d'un K-module à droite est un K-module à gauche, ou encore un module à droite sur l'anneau opposé K.
Dual normIn functional analysis, the dual norm is a measure of size for a continuous linear function defined on a normed vector space. Let be a normed vector space with norm and let denote its continuous dual space. The dual norm of a continuous linear functional belonging to is the non-negative real number defined by any of the following equivalent formulas: where and denote the supremum and infimum, respectively.
ÉquicontinuitéEn analyse, un ensemble de fonctions définies sur un espace topologique et à valeurs dans un espace uniforme est dit équicontinu en un point de l'espace de départ si ces fonctions non seulement sont toutes continues en ce point, mais le sont d'une façon semblable en un sens explicité plus loin. L'ensemble de fonctions sera dit équicontinu tout court s'il est équicontinu en tout point de l'espace de départ. On parle souvent non d'ensemble, mais de famille de fonctions équicontinues ; ce qui importe cependant reste l'ensemble des fonctions de la famille.
CodimensionLa codimension est une notion de géométrie, rencontrée en algèbre linéaire, en géométrie différentielle et en géométrie algébrique. C'est une mesure de la différence de tailles entre un espace et un sous-espace. La codimension dans un espace vectoriel E d'un sous-espace vectoriel F est la dimension de l'espace vectoriel quotient E/F : Cette codimension est aussi égale à la dimension de n'importe quel supplémentaire de F dans E car tous sont isomorphes à E/F. Il résulte de la définition que F = E si et seulement si codim(F) = 0.
Spaces of test functions and distributionsIn mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued (or sometimes real-valued) functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the , that makes into a complete Hausdorff locally convex TVS.
Topologies on spaces of linear mapsIn mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs).