In statistics, shrinkage is the reduction in the effects of sampling variation. In regression analysis, a fitted relationship appears to perform less well on a new data set than on the data set used for fitting. In particular the value of the coefficient of determination 'shrinks'. This idea is complementary to overfitting and, separately, to the standard adjustment made in the coefficient of determination to compensate for the subjunctive effects of further sampling, like controlling for the potential of new explanatory terms improving the model by chance: that is, the adjustment formula itself provides "shrinkage." But the adjustment formula yields an artificial shrinkage. A shrinkage estimator is an estimator that, either explicitly or implicitly, incorporates the effects of shrinkage. In loose terms this means that a naive or raw estimate is improved by combining it with other information. The term relates to the notion that the improved estimate is made closer to the value supplied by the 'other information' than the raw estimate. In this sense, shrinkage is used to regularize ill-posed inference problems. Shrinkage is implicit in Bayesian inference and penalized likelihood inference, and explicit in James–Stein-type inference. In contrast, simple types of maximum-likelihood and least-squares estimation procedures do not include shrinkage effects, although they can be used within shrinkage estimation schemes. Many standard estimators can be improved, in terms of mean squared error (MSE), by shrinking them towards zero (or any other fixed constant value). In other words, the improvement in the estimate from the corresponding reduction in the width of the confidence interval can outweigh the worsening of the estimate introduced by biasing the estimate towards zero (see bias-variance tradeoff). Assume that the expected value of the raw estimate is not zero and consider other estimators obtained by multiplying the raw estimate by a certain parameter. A value for this parameter can be specified so as to minimize the MSE of the new estimate.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
MATH-562: Statistical inference
Inference from the particular to the general based on probability models is central to the statistical method. This course gives a graduate-level account of the main ideas of statistical inference.
EE-411: Fundamentals of inference and learning
This is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternat
MGT-302: Introduction to data driven business analytics
This course focuses on methods and algorithms needed to apply machine learning with an emphasis on applications in business analytics
Afficher plus
Séances de cours associées (32)
Sélection et évaluation du modèle : Dilemma à variation de biais, estimation des crêtes
Explore le sur-apprentissage, la généralisation et le sous-apprentissage dans les modèles d'apprentissage automatique.
Méthodes de gradient adaptatif: théorie et applications
Explore les méthodes de gradient adaptatif, leurs propriétés, la convergence et la comparaison avec les algorithmes d'optimisation traditionnels.
SVM et Feature Maps
Explore les SVM, les cartes de fonctionnalités et l'importance de trouver la solution à la marge maximale pour les problèmes de classification.
Afficher plus
Publications associées (38)
Concepts associés (12)
Dilemme biais-variance
En statistique et en apprentissage automatique, le dilemme (ou compromis) biais–variance est le problème de minimiser simultanément deux sources d'erreurs qui empêchent les algorithmes d'apprentissage supervisé de généraliser au-delà de leur échantillon d'apprentissage : Le biais est l'erreur provenant d’hypothèses erronées dans l'algorithme d'apprentissage. Un biais élevé peut être lié à un algorithme qui manque de relations pertinentes entre les données en entrée et les sorties prévues (sous-apprentissage).
Biais (statistique)
En statistique ou en épidémiologie, un biais est une démarche ou un procédé qui engendre des erreurs dans les résultats d'une étude. Formellement, le biais de l'estimateur d'un paramètre est la différence entre la valeur de l'espérance de cet estimateur (qui est une variable aléatoire) et la valeur qu'il est censé estimer (définie et fixe). biais effet-centre biais de vérification (work-up biais) biais d'autosélection, estimé à 27 % des travaux d'écologie entre 1960 et 1984 par le professeur de biologie américain Stuart H.
Bessel's correction
In statistics, Bessel's correction is the use of n − 1 instead of n in the formula for the sample variance and sample standard deviation, where n is the number of observations in a sample. This method corrects the bias in the estimation of the population variance. It also partially corrects the bias in the estimation of the population standard deviation. However, the correction often increases the mean squared error in these estimations. This technique is named after Friedrich Bessel.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.