Pavage du planthumb|Pavage constitué de triangles équilatéraux et d'hexagones, dit pavage trihexagonal. thumb|Pavage hexagonal de tomettes provençales en terre cuite. Un pavage du plan est un ensemble de portions du plan, par exemple des polygones, dont l'union est le plan tout entier, sans recouvrement. Plus précisément, c'est une partition du plan euclidien par des éléments d'un ensemble fini, appelés « carreaux » (plus précisément, ce sont des compacts d’intérieur non vide).
Prisme (solide)Un prisme est un solide géométrique délimité par deux polygones, appelés les bases du prisme, images l'un de l'autre par une translation. Ces bases sont reliées entre elles par des parallélogrammes. Quand ces parallélogrammes sont des rectangles, on dit que le prisme est droit. En géométrie affine, un prisme est un cas particulier de polyèdre. C'est un cylindre dont la base est polygonale. vignette|Prisme triangulaire. Une droite (d) de direction constante se déplaçant le long d'un polygone (p) décrit une surface appelée surface prismatique de polygone directeur (p) et de génératrice (d).
Symbole de SchläfliEn mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, ...} qui permet de définir les polyèdres réguliers et les pavages. Cette notation donne un résumé de certaines propriétés importantes d'un polytope régulier particulier. Le symbole de Schläfli fut nommé ainsi en l'honneur du mathématicien du Ludwig Schläfli qui fit d'importantes contributions en géométrie et dans d'autres domaines. Le symbole de Schläfli pour un polygone régulier convexe à n côtés est {n}.
Triangle isocèlevignette|upright|Un triangle isocèle. En géométrie, un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Plus précisément, un triangle ABC est dit isocèle en A lorsque les longueurs AB et AC sont égales. A est alors le sommet principal du triangle et [BC] sa base. Dans un triangle isocèle, les angles adjacents à la base sont égaux. Un triangle équilatéral est un cas particulier de triangle isocèle, ayant ses trois côtés de même longueur.
Convex uniform honeycombIn geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells. Twenty-eight such honeycombs are known: the familiar cubic honeycomb and 7 truncations thereof; the alternated cubic honeycomb and 4 truncations thereof; 10 prismatic forms based on the uniform plane tilings (11 if including the cubic honeycomb); 5 modifications of some of the above by elongation and/or gyration.