Concept

Gravitation (livre)

Concepts associés (10)
Geodesics in general relativity
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance).
Ricci calculus
In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Système d'unités géométriques
En relativité générale, le système d'unités géométriques est un système d'unités réduisant l'ensemble des grandeurs physiques à des longueurs ou des puissances de longueurs. Il vise à proposer une écriture plus simple des équations propres à la relativité générale en omettant deux constantes fondamentales : la vitesse de la lumière c et la constante de gravitation G, c'est-à-dire en considérant que les unités de masse et de temps en vigueur sont telles que ces quantités valent 1.
Tenseur électromagnétique
Le tenseur électromagnétique, ou tenseur de Maxwell est le nom de l'objet mathématique décrivant la structure du champ électromagnétique en un point donné. Le tenseur électromagnétique est aussi connu comme : le tenseur d'intensité du champ électromagnétique ; le tenseur du champ magnétique ; le tenseur de Maxwell ; le tenseur de Faraday. Ce tenseur est défini dans le cadre du formalisme mathématique de la relativité restreinte, où aux trois dimensions spatiales est adjointe une dimension temporelle.
Tenseur énergie-impulsion
Le tenseur énergie-impulsion est un outil mathématique utilisé notamment en relativité générale afin de représenter la répartition de masse et d'énergie dans l'espace-temps. La théorie de la relativité restreinte d'Einstein établissant l'équivalence entre masse et énergie, la théorie de la relativité générale indique que ces dernières courbent l'espace. L'effet visible de cette courbure est la déviation de la trajectoire des objets en mouvement, observé couramment comme l'effet de la gravitation.
Équation d'Einstein
vignette|Équation sur un mur à Leyde. L’'équation d'Einstein ou équation de champ d'Einstein' (en anglais, Einstein field equation ou EFE), publiée par Albert Einstein, pour la première fois le , est l'équation aux dérivées partielles principale de la relativité générale. C'est une équation dynamique qui décrit comment la matière et l'énergie modifient la géométrie de l'espace-temps. Cette courbure de la géométrie autour d'une source de matière est alors interprétée comme le champ gravitationnel de cette source.
Quadrivecteur
En physique, un quadrivecteur est un vecteur à quatre dimensions utilisé pour représenter un événement dans l'espace-temps. Dans la théorie de la relativité restreinte, un quadrivecteur est un vecteur de l'espace de Minkowski, où un changement de référentiel se fait par des transformations de Lorentz (par covariance des coordonnées). En relativité restreinte, un quadrivecteur (ou 4-vecteur) est un vecteur appartenant à l'espace vectoriel associé à l'espace affine qu'est l'espace-temps.
Algèbre extérieure
En mathématiques, et plus précisément en algèbre et en analyse vectorielle, l'algèbre extérieure d'un espace vectoriel E est une algèbre associative graduée, notée . La multiplication entre deux éléments a et b est appelée le produit extérieur et est notée . Le carré de tout élément de E est zéro (), on dit que la multiplication est alternée, ce qui entraîne que pour deux éléments de E : (la loi est « anti-commutative »). L'algèbre extérieure est aussi appelée algèbre de Grassmann nommée ainsi en l'honneur de Hermann Grassmann.
Espace de Minkowski
thumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.
Relativité restreinte
La relativité restreinte est la théorie élaborée par Albert Einstein en 1905 en vue de tirer toutes les conséquences physiques de la relativité galiléenne et du principe selon lequel la vitesse de la lumière dans le vide a la même valeur dans tous les référentiels galiléens (ou inertiels), ce qui était implicitement énoncé dans les équations de Maxwell (mais interprété bien différemment jusque-là, avec « l'espace absolu » de Newton et léther).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.