Couvre les principes fondamentaux de la théorie de la détection et de l'estimation, en se concentrant sur l'erreur moyenne au carré et le test d'hypothèses.
Introduit des modèles linéaires dans l'apprentissage automatique, couvrant les bases, les modèles paramétriques, la régression multi-sorties et les mesures d'évaluation.
Couvre le concept d'inférence moyenne-carré-erreur et d'estimateurs optimaux pour les problèmes d'inférence en utilisant différents critères de conception.
Couvre les bases de la régression linéaire dans l'apprentissage automatique, y compris la formation des modèles, les fonctions de perte et les mesures d'évaluation.
Couvre les méthodes Monte Carlo, la réduction de la variance et le contrôle optimal stochastique, explorant les techniques de simulation, l'efficacité et la dynamique d'investissement.