Chaos quantiqueLe terme « chaos quantique » désigne un champ de recherches ouvert dans les années 1970 qui est issu des succès de la théorie du chaos en dynamique hamiltonienne classique ; il tente essentiellement de répondre à la question : La notion de chaos renvoie à un concept qui remonte à l'Antiquité, dans la perspective d'une explication du monde reposant sur le principe de l'harmonie et du cosmos.
Décalage de Bernoulli (langage formel)Un décalage de Bernoulli (en anglais Bernoulli shift) est une transformation opérant sur des mots de longueur infinie, étudiée en dynamique symbolique. Étant donné un alphabet Λ, c'est-à-dire un ensemble fini. Un mot infini est une suite à valeurs dans l'alphabet Λ. Le décalage de Bernoulli est l'application qui décale un mot d'un cran vers la gauche : On peut définir de même les décalages de Bernoulli pour des mots infinis indexés sur et les résultats et propriétés énoncés sont similaires.
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Composition operatorIn mathematics, the composition operator with symbol is a linear operator defined by the rule where denotes function composition. The study of composition operators is covered by AMS category 47B33. In physics, and especially the area of dynamical systems, the composition operator is usually referred to as the Koopman operator (and its wild surge in popularity is sometimes jokingly called "Koopmania"), named after Bernard Koopman. It is the left-adjoint of the transfer operator of Frobenius–Perron.
Variable d'étatEn thermodynamique, des variables d'état sont des paramètres qui caractérisent l'état d'équilibre d'un système, tels que le volume, la température, la pression et la quantité de matière. Ces caractérisations sont elles-mêmes des fonctions d'état du système. Une variable d'état n'a de sens que pour un système à l'équilibre thermodynamique. Une variable d'état est toujours une grandeur physique scalaire. Il s'agit soit d'une grandeur extensive, définie sur l'ensemble du système considéré, soit d'une grandeur intensive, qui doit alors prendre la même valeur en tout point du système.
Bifurcation de HopfDans la théorie des bifurcations, une bifurcation de Hopf ou de Poincaré–Andronov–Hopf, des noms de Henri Poincaré, Eberhard Hopf, et Aleksandr Andronov, est une bifurcation locale dans laquelle un point fixe d'un système dynamique perd sa stabilité tandis qu'une paire de valeurs propres complexes conjuguées de la linéarisation autour du point fixe franchissent l'axe imaginaire du plan complexe. Pour un tour d'horizon plus général sur les bifurcations de Hopf et leurs applications notamment en physique et en électronique, voir.
Recurrence plotIn descriptive statistics and chaos theory, a recurrence plot (RP) is a plot showing, for each moment in time, the times at which the state of a dynamical system returns to the previous state at , i.e., when the phase space trajectory visits roughly the same area in the phase space as at time . In other words, it is a plot of showing on a horizontal axis and on a vertical axis, where is the state of the system (or its phase space trajectory). Natural processes can have a distinct recurrent behaviour, e.g.
Conservative systemIn mathematics, a conservative system is a dynamical system which stands in contrast to a dissipative system. Roughly speaking, such systems have no friction or other mechanism to dissipate the dynamics, and thus, their phase space does not shrink over time. Precisely speaking, they are those dynamical systems that have a null wandering set: under time evolution, no portion of the phase space ever "wanders away", never to be returned to or revisited. Alternately, conservative systems are those to which the Poincaré recurrence theorem applies.