Nombres de FeigenbaumEn mathématiques, les nombres de Feigenbaum ou constantes de Feigenbaum sont deux nombres réels découverts par le mathématicien Mitchell Feigenbaum en 1975. Tous deux expriment des rapports apparaissant dans les diagrammes de bifurcation de la théorie du chaos. vignette|droite|Exemple de diagramme de bifurcation (en abscisse, r désigne le paramètre μ). Les diagrammes de bifurcation concernent les valeurs limites prises par les suites de type où f est une fonction réelle, définie positive et trois fois dérivable sur [0, 1] et possédant un maximum unique sur cet intervalle (c’est-à-dire sans maximum relatif), noté f.
Michel HénonMichel Hénon est un mathématicien et astronome français né le à Paris et mort à Contes le . Il a effectué sa carrière à l'Institut d'Astrophysique de Paris, puis à l'observatoire de Nice. En astronomie, Michel Hénon est connu pour ses contributions dans le domaine de la dynamique stellaire, et pour l'étude de l'évolution des anneaux de Saturne. À la fin des années 1960 et au début des années 1970, il s'implique dans la dynamique des amas d'étoiles, en particulier des amas globulaires.
Identification de systèmeL'identification de système ou identification paramétrique est une technique de l'automatique consistant à obtenir un modèle mathématique d'un système à partir de mesures. L'identification consiste à appliquer ou observer des signaux de perturbation à l'entrée d'un système (par exemple, pour un système électronique, ceux-ci peuvent être de type binaire aléatoire ou pseudo-aléatoire, galois, sinus à fréquences multiples...) et en analyser la sortie dans le but d'obtenir un modèle purement mathématique.
Effet papillonvignette|Un graphique de l'attracteur étrange de Lorenz pour les valeurs ρ = 28, σ = 10, β = 8/3 « Effet papillon » est une expression qui résume une métaphore concernant le phénomène fondamental de sensibilité aux conditions initiales de la théorie du chaos. La formulation exacte qui en est à l'origine fut exprimée par Edward Lorenz lors d'une conférence scientifique en 1972, dont le titre était : vignette|Le battement d'ailes du papillon.
Homoclinic orbitIn the study of dynamical systems, a homoclinic orbit is a path through phase space which joins a saddle equilibrium point to itself. More precisely, a homoclinic orbit lies in the intersection of the stable manifold and the unstable manifold of an equilibrium. It is a heteroclinic orbit–a path between any two equilibrium points–in which the endpoints are one and the same.
Théorie des catastrophesDans le domaine de la topologie différentielle, la théorie des catastrophes, fondée par René Thom, est une branche de la théorie des bifurcations qui a pour but de construire le modèle dynamique continu le plus simple pouvant engendrer une morphologie, donnée empiriquement, ou un ensemble de phénomènes discontinus. Plus précisément, il s'agit d'étudier qualitativement comment les solutions d'équations dépendent du nombre de paramètres qu'elles contiennent. Le terme de « catastrophe » désigne le lieu où une fonction change brusquement de forme.
QuasiperiodicityQuasiperiodicity is the property of a system that displays irregular periodicity. Periodic behavior is defined as recurring at regular intervals, such as "every 24 hours". Quasiperiodic behavior is a pattern of recurrence with a component of unpredictability that does not lend itself to precise measurement. It is different from the mathematical concept of an almost periodic function, which has increasing regularity over multiple periods. Climate oscillations that appear to follow a regular pattern but which do not have a fixed period are called quasiperiodic.
Hadamard's dynamical systemIn physics and mathematics, the Hadamard dynamical system (also called Hadamard's billiard or the Hadamard–Gutzwiller model) is a chaotic dynamical system, a type of dynamical billiards. Introduced by Jacques Hadamard in 1898, and studied by Martin Gutzwiller in the 1980s, it is the first dynamical system to be proven chaotic. The system considers the motion of a free (frictionless) particle on the Bolza surface, i.e, a two-dimensional surface of genus two (a donut with two holes) and constant negative curvature; this is a compact Riemann surface.
LinearizationIn mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. This method is used in fields such as engineering, physics, economics, and ecology.
Oscillateur de Van der PolL’oscillateur de Van der Pol est un système dynamique à temps continu à un degré de liberté. Il est décrit par une coordonnée x(t) vérifiant une équation différentielle faisant intervenir deux paramètres : une pulsation propre ω et un coefficient de non-linéarité ε. Lorsque ε = 0, cet oscillateur se réduit à un oscillateur harmonique pur. Il porte le nom de Balthasar van der Pol.