En mathématiques, un opérateur différentiel défini sur un ouvert est appelé opérateur hypoelliptique si pour toute distribution définie sur un ouvert telle que soit une fonction lisse, est nécessairement une fonction lisse également. Si on remplace la condition d'être une fonction lisse par être une fonction analytique, on parle d'opérateurs hypoelliptiques analytiques. Tout opérateur elliptique à coefficients est hypoelliptique. En particulier, le laplacien , qui est elliptique, est hypoelliptique (c'est même un opérateur hypoelliptique analytique). L'opérateur de la chaleur (associé à l'équation de la chaleur) est hypoelliptique (mais pas elliptique). L'opérateur d'alembertien (associé à l'équation des ondes) n'est pas hypoelliptique. Lars Hörmander, "Hypoelliptic differential operators", Ann. Inst.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.