In pharmacology, Schild regression analysis, based upon the Schild equation, both named for Heinz Otto Schild, are tools for studying the effects of agonists and antagonists on the response caused by the receptor or on ligand-receptor binding. Dose-response curves can be constructed to describe response or ligand-receptor complex formation as a function of the ligand concentration. Antagonists make it harder to form these complexes by inhibiting interactions of the ligand with its receptor. This is seen as a change in the dose response curve: typically a rightward shift or a lowered maximum. A reversible competitive antagonist should cause a rightward shift in the dose response curve, such that the new curve is parallel to the old one and the maximum is unchanged. This is because reversible competitive antagonists are surmountable antagonists. The magnitude of the rightward shift can be quantified with the dose ratio, r. The dose ratio r is the ratio of the dose of agonist required for half maximal response with the antagonist present divided by the agonist required for half maximal response without antagonist ("control"). In other words, the ratio of the EC50s of the inhibited and un-inhibited curves. Thus, r represents both the strength of an antagonist and the concentration of the antagonist that was applied. An equation derived from the Gaddum equation can be used to relate r to , as follows: where r is the dose ratio is the concentration of the antagonist is the equilibrium constant of the binding of the antagonist to the receptor A Schild plot is a double logarithmic plot, typically as the ordinate and as the abscissa. This is done by taking the base-10 logarithm of both sides of the previous equation after subtracting 1: This equation is linear with respect to , allowing for easy construction of graphs without computations. This was particular valuable before the use of computers in pharmacology became widespread. The y-intercept of the equation represents the negative logarithm of and can be used to quantify the strength of the antagonist.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
EE-515: Fundamentals of biosensors and electronic biochips
The labels "biosensor"€ and "eBiochip" have been employed to refer to the most diverse systems and in several fields of application. The course is meant not only to provide means to dig into this sea
CH-332: Medicinal chemistry
Sitting at the crossroad of organic chemistry and medicine, this course outlines how an initial hit compound transitions into a lead candidate, and ultimately a drug, in the modern drug discovery worl
BIO-478: Pharmacology and pharmacokinetics
This course introduces the student to the fudamentals of pharmacology, pharmacokinetics and drug-receptor interactions. It discusses also pharmacogenetics and chronopharmacology, to exemplify the chal
Publications associées (36)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.