The ensemble Kalman filter (EnKF) is a recursive filter suitable for problems with a large number of variables, such as discretizations of partial differential equations in geophysical models. The EnKF originated as a version of the Kalman filter for large problems (essentially, the covariance matrix is replaced by the sample covariance), and it is now an important data assimilation component of ensemble forecasting. EnKF is related to the particle filter (in this context, a particle is the same thing as an ensemble member) but the EnKF makes the assumption that all probability distributions involved are Gaussian; when it is applicable, it is much more efficient than the particle filter. The ensemble Kalman filter (EnKF) is a Monte Carlo implementation of the Bayesian update problem: given a probability density function (PDF) of the state of the modeled system (the prior, called often the forecast in geosciences) and the data likelihood, Bayes' theorem is used to obtain the PDF after the data likelihood has been taken into account (the posterior, often called the analysis). This is called a Bayesian update. The Bayesian update is combined with advancing the model in time, incorporating new data from time to time. The original Kalman filter, introduced in 1960, assumes that all PDFs are Gaussian (the Gaussian assumption) and provides algebraic formulas for the change of the mean and the covariance matrix by the Bayesian update, as well as a formula for advancing the mean and covariance in time provided the system is linear. However, maintaining the covariance matrix is not feasible computationally for high-dimensional systems. For this reason, EnKFs were developed. EnKFs represent the distribution of the system state using a collection of state vectors, called an ensemble, and replace the covariance matrix by the sample covariance computed from the ensemble. The ensemble is operated with as if it were a random sample, but the ensemble members are really not independent, as they all share the EnKF.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
ENV-548: Sensor orientation
Determination of spatial orientation (i.e. position, velocity, attitude) via integration of inertial sensors with satellite positioning. Prerequisite for many applications related to remote sensing, e
ME-422: Multivariable control
This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be placed on discrete
MATH-342: Time series
A first course in statistical time series analysis and applications.
Afficher plus
Publications associées (169)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.