Jacobi symbol k/n for various k (along top) and n (along left side). Only 0 ≤ k < n are shown, since due to rule (2) below any other k can be reduced modulo n. Quadratic residues are highlighted in yellow — note that no entry with a Jacobi symbol of −1 is a quadratic residue, and if k is a quadratic residue modulo a coprime n, then k/n = 1, but not all entries with a Jacobi symbol of 1 (see the n = 9 and n = 15 rows) are quadratic residues. Notice also that when either n or k is a square, all values are nonnegative.
The Jacobi symbol is a generalization of the Legendre symbol. Introduced by Jacobi in 1837, it is of theoretical interest in modular arithmetic and other branches of number theory, but its main use is in computational number theory, especially primality testing and integer factorization; these in turn are important in cryptography.
For any integer a and any positive odd integer n, the Jacobi symbol a/n is defined as the product of the Legendre symbols corresponding to the prime factors of n:
where
is the prime factorization of n.
The Legendre symbol a/p is defined for all integers a and all odd primes p by
Following the normal convention for the empty product, a/1 = 1.
When the lower argument is an odd prime, the Jacobi symbol is equal to the Legendre symbol.
The following is a table of values of Jacobi symbol k/n with n ≤ 59, k ≤ 30, n odd.
The following facts, even the reciprocity laws, are straightforward deductions from the definition of the Jacobi symbol and the corresponding properties of the Legendre symbol.
The Jacobi symbol is defined only when the upper argument ("numerator") is an integer and the lower argument ("denominator") is a positive odd integer.
If n is (an odd) prime, then the Jacobi symbol a/n is equal to (and written the same as) the corresponding Legendre symbol.
If a ≡ b (mod n), then
If either the top or bottom argument is fixed, the Jacobi symbol is a completely multiplicative function in the remaining argument:
4.
5.
The law of quadratic reciprocity: if m and n are odd positive coprime integers, then
6.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
En mathématiques, plus précisément en arithmétique modulaire, un entier naturel q est un résidu quadratique modulo n s'il possède une racine carrée en arithmétique modulaire de module n. Autrement dit, q est un résidu quadratique modulo n s'il existe un entier x tel que : Dans le cas contraire, on dit que q est un non-résidu quadratique modulo n Par exemple : modulo 4, les résidus quadratiques sont les entiers congrus à 2 ≡ 0 = 0 ou à (±1) = 1.
En théorie des nombres, le symbole de Legendre est une fonction de deux variables entières à valeurs dans {–1, 0, 1}, qui caractérise les résidus quadratiques. Il a été introduit par Adrien-Marie Legendre, au cours de ses efforts pour démontrer la loi de réciprocité quadratique. Il ne dépend donc que de la classe de a modulo p. Le cas particulier p = 2 est inclus dans cette définition mais sans intérêt : vaut 0 si a est pair et 1 sinon.
En mathématiques et plus précisément en arithmétique modulaire, le critère d'Euler est un théorème utilisé en théorie des nombres pour déterminer si un entier donné est un résidu quadratique (autrement dit, un carré) modulo un nombre premier. Soient un nombre premier différent de 2 et un entier premier avec . Si est un résidu quadratique modulo , alors . Si n'est pas un résidu quadratique modulo alors . Ce qui se résume, en utilisant le symbole de Legendre, par : La preuve repose sur le petit théorème de Fermat et sur le fait que dans un anneau intègre, un polynôme n'a jamais plus de racines que son degré.
Explore la cryptographie RSA, couvrant les tests de primalité, les résidus quadratiques et les applications cryptographiques.
Explore les nombres premiers dans la progression arithmétique, en se concentrant sur les fonctions L, les caractères et la divergence de la somme de 1 sur p pour p congruent à un modulo q.
Couvre les nombres premiers, la cryptographie RSA et les tests de primalité, y compris le théorème des restes chinois et le test de Miller-Rabin.
Post-quantum cryptography is a branch of cryptography which deals with cryptographic algorithms whose hardness assumptions are not based on problems known to be solvable by a quantum computer, such as the RSA problem, factoring or discrete logarithms.This ...
Gaussian belief propagation (GaBP) is an iterative algorithm for computing the mean (and variances) of a multivariate Gaussian distribution, or equivalently, the minimum of a multivariate positive definite quadratic function. Sufficient conditions, such as ...