GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Axiome des parallèlesL’axiome d'Euclide, dit également cinquième postulat d’Euclide, est dû au savant grec Euclide (). C'est un axiome relatif à la géométrie du plan. La nécessité de cet axiome a constitué la question la plus lancinante de toute l'histoire de la géométrie, et il a fallu plus de deux millénaires de débats ininterrompus pour que la communauté scientifique reconnaisse l'impossibilité de le réduire au statut de simple théorème. vignette|Illustration de l'axiome d'Euclide : La droite S détermine les angles internes α et β avec les droites g et h.
Géométrie hyperboliqueEn mathématiques, la géométrie hyperbolique (nommée auparavant géométrie de Lobatchevski, lequel est le premier à en avoir publié une étude approfondie) est une géométrie non euclidienne vérifiant les quatre premiers postulats d’Euclide, mais pour laquelle le cinquième postulat, qui équivaut à affirmer que par un point extérieur à une droite passe une et une seule droite qui lui est parallèle, est remplacé par le postulat selon lequel « par un point extérieur à une droite passent plusieurs droites parallèle
Parallélisme (géométrie)En géométrie affine, le parallélisme est une propriété relative aux droites, aux plans ou plus généralement aux sous-espaces affines. La notion de parallélisme a été initialement formulée par Euclide dans ses Éléments, mais sa présentation a évolué dans le temps, passant d'une définition axiomatique à une simple définition. La notion de parallélisme est introduite dans le Livre I des Éléments d'Euclide. Pour Euclide, une droite s'apparente plutôt à un segment.
Géométrie absolueLa géométrie absolue (parfois appelée géométrie neutre) est une géométrie basée sur le système d'axiomes de la géométrie euclidienne, privé de l'axiome des parallèles ou de sa négation. Elle est formée des résultats qui sont vrais à la fois en géométrie euclidienne et en géométrie hyperbolique, parfois énoncés sous une forme affaiblie par rapport à l'énoncé euclidien traditionnel. La géométrie absolue fut introduite (sous ce nom) par János Bolyai en 1832 ; le terme de géométrie neutre (sous-entendu par rapport à l'axiome des parallèles) lui a été parfois préféré, pour éviter de donner l'impression que toute autre géométrie en découle.
Hyperbolic spaceIn mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.
Eugenio BeltramiEugenio Beltrami (1835-1900), appelé Eugène Beltrami en français, est un mathématicien et physicien italien. Il est connu pour ses travaux sur l'élasticité, l'hydrodynamique, l’électricité et le magnétisme, mais son nom est surtout associé à l'histoire de la géométrie, et au rôle fondamental qu'il joua dans l'affermissement des fondements de la géométrie non euclidienne. Sa famille paternelle comptait des artistes, dont son père, un peintre passionné de miniatures.
Géométrie non euclidienneLa géométrie non euclidienne (GNE) est, en mathématiques, une théorie géométrique ayant recours aux axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues initialement de la volonté de démontrer la proposition du cinquième postulat, qui apparaissait peu satisfaisant en tant que postulat car trop complexe et peut-être redondant avec les autres postulats).
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
EuclideEuclide (en Eukleídês), dit parfois Euclide d'Alexandrie, est un mathématicien de la Grèce antique, auteur d’un traité de mathématiques, qui constitue l'un des textes fondateurs de cette discipline en Occident. Aucune information fiable n'est parvenue sur la vie ou la mort d'Euclide ; il est possible qu'il ait vécu vers 300 avant notre ère. Son ouvrage le plus célèbre, les Éléments, est un des plus anciens traités connus présentant de manière systématique, à partir d'axiomes et de postulats, un large ensemble de théorèmes accompagnés de leurs démonstrations.