Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le paradigme de l'apprentissage profond, y compris les défis, les réseaux neuronaux, la robustesse, l'équité, l'interprétabilité et l'efficacité énergétique.
Explore les modèles paramétriques, les techniques d'estimation, les modèles de régression et les classificateurs basés sur les scores dans l'analyse des données.
Couvre les bases des réseaux neuronaux, des fonctions d'activation, de la formation, du traitement d'image, des CNN, de la régularisation et des méthodes de réduction de dimensionnalité.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Explore les modèles linéaires pour la classification, y compris la classification binaire, la régression logistique, les limites de décision et les machines vectorielles de support.
Explore l'évaluation du gradient des politiques avec un horizon en 1 étape, met à jour les règles, les comparaisons avec Perceptron et la biologie, et les techniques de généralisation.
Explore Support Vector Machines, couvrant la marge ferme, la marge souple, la perte de charnière, la comparaison des risques et la perte de charnière quadratique.
Explore les classificateurs gaussiens, la classification des textures, l'estimation des paramètres, l'apprentissage supervisé et les réseaux neuronaux profonds dans le traitement d'images.