Accélération de suiteEn mathématiques, laccélération de suite est une méthode de transformation de suites ou de série numérique visant à améliorer la vitesse de convergence d'une série. Des techniques d'accélération sont souvent utilisées en analyse numérique, afin d'améliorer la rapidité de méthodes d'intégration numérique ou obtenir des identités sur des fonctions spéciales. Par exemple, la transformation d'Euler appliquée à la série hypergéométrique permet de retrouver plusieurs identités connues.
Transformation de ShanksEn analyse numérique, la transformation de Shanks est une méthode non linéaire d'accélération de la convergence de suites numériques. Cette méthode est nommée d'après Daniel Shanks, qui l'exposa en 1955, bien qu'elle ait été étudiée et publiée par R. J. Schmidt dès 1941. C'est une généralisation de l'algorithme Delta-2 d'Aitken. Soit une suite numérique (An) dont on cherche à connaitre la limite A.
Extrapolation de RichardsonEn analyse numérique, le procédé d'extrapolation de Richardson est une technique d'accélération de la convergence. Il est ainsi dénommé en l'honneur de Lewis Fry Richardson, qui l'a popularisé au début du . Les premières utilisations remontent à Huygens en 1654 et Takebe Kenkō en 1723, pour l'évaluation numérique de π. Ce procédé est notamment utilisé pour définir une méthode numérique d'intégration : la méthode de Romberg, accélération de la méthode des trapèzes.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.