Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.
Explore l'inférence statistique, la suffisance et l'exhaustivité, en soulignant l'importance de statistiques suffisantes et le rôle de statistiques complètes dans la réduction des données.
Explore le cadre de la théorie de la décision en théorie statistique, considérant les statistiques comme un jeu aléatoire avec des concepts clés tels que la recevabilité, les règles minimax et les règles Bayes.
Introduit une estimation de vraisemblance maximale en économétrie, couvrant les principes, les propriétés, les applications et les tests de spécification.
Couvre l'estimation maximale de la probabilité, en mettant l'accent sur l'estimation-distribution ML, l'estimation de la réduction et les fonctions de perte.
Couvre les intervalles de confiance pour les moyennes gaussiennes, la distribution des élèves et les intervalles de confiance de Wald pour les estimateurs de probabilité maximale.