Couvre les objets fibreux, le levage des cornes, et l'adjonction entre quasi-catégories et complexes kan, ainsi que la généralisation des catégories et complexes kan.
Démontre l'équivalence entre l'homologie simpliciale et singulière, prouvant les isomorphismes pour les complexes s finis et discutant de longues séquences exactes.
Explore l'invariance de l'homotopie et son application à des groupes d'homologie de quotients, mettant en valeur l'isomorphisme et l'homotopie en chaîne.