Le paysage d'optimisation de Convex caché des réseaux neuronaux profonds
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la dualité lagrangienne dans l'optimisation convexe, transformant les problèmes en formulations min-max et discutant de l'importance des solutions doubles.
Explore les critères de monotonie, la règle de L'Hopital et la continuité de Lipschitz dans les fonctions différentiables et les réseaux neuronaux profonds.
Explore l'optimisation adaptative efficace dans la mémoire pour l'apprentissage à grande échelle et les défis de la mémoire dans la formation de grands modèles.
Couvre les techniques de réduction de la variance dans l'optimisation, en mettant l'accent sur la descente en gradient et les méthodes de descente en gradient stochastique.
Déplacez-vous dans la construction d'ensembles robustes grâce à l'augmentation de la marge pour améliorer la défense contradictoire dans les modèles d'apprentissage automatique.
Plongez dans l'optimisation du deep learning, les défis, les variantes SGD, les points critiques, les réseaux surparamétrés et les méthodes adaptatives.
Explore la recherche approfondie des connaissances et son application pour prédire les résultats d'apprentissage des élèves à l'aide de réseaux neuronaux et de fonctions de perte.