Explore les fondamentaux de la régression linéaire, la formation des modèles, l'évaluation et les mesures du rendement, en soulignant l'importance de la R2, du MSE et de l'EAM.
Explique le processus de recherche d'une solution réalisable de base initiale pour les problèmes d'optimisation linéaire à l'aide de l'algorithme Simplex.
Couvre l'essentiel de la régression linéaire, en se concentrant sur l'utilisation de multiples variables explicatives quantitatives pour prédire un résultat quantitatif.
Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Explore l'hétéroscédasticité et l'autocorrélation en économétrie, couvrant les implications, les applications, les méthodes de test et les conséquences des tests d'hypothèses.
Explore la régression quantile pour la prévision des prix de l'électricité en utilisant des données de séries chronologiques, la régularisation et l'astuce du noyau.
Couvre la régression non paramétrique à l'aide de techniques d'estimation basées sur le noyau pour modéliser des relations complexes entre les variables.