Couvre les bases de l'optimisation convexe, y compris les problèmes mathématiques, les minimiseurs et les concepts de solution, en mettant l'accent sur des méthodes efficaces et des applications pratiques.
Explique le processus de recherche d'une solution réalisable de base initiale pour les problèmes d'optimisation linéaire à l'aide de l'algorithme Simplex.
Explore la dualité lagrangienne dans l'optimisation convexe, transformant les problèmes en formulations min-max et discutant de l'importance des solutions doubles.
Couvre la modélisation et l'optimisation des systèmes énergétiques, en se concentrant sur la résolution de problèmes d'optimisation avec des contraintes et des variables.
Explore la convexité de l'extension de Lovsz et la maximisation des fonctions sous-modulaires, en se concentrant sur l'extension des fonctions aux ensembles convexes et en prouvant leur convexité.