Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les applications du filtrage de Kalman dans les systèmes de contrôle et de communication, en se concentrant sur l'estimation d'état et l'estimation de canal.
Explore les défis et les solutions pour gérer la dose d'électrons en microscopie, en soulignant l'importance d'un suivi et d'une analyse précis des doses.
Introduit le filtre Kalman pour estimer l'état d'un système dynamique à partir de mesures bruyantes, couvrant la prédiction, la mise à jour et les étapes de filtrage.
Explore le filtre de Kalman variable dans le temps, l'estimation de l'état, les défis liés au conditionnement des sorties mesurées et l'importance des transformations affines.
Introduit des notions fondamentales dans le filtrage numérique, couvrant les approches de filtrage 2D, les filtres linéaires, la stabilité, les filtres FIR et IIR, le filtrage de domaine de fréquence et les filtres gaussiens.
Discute des contrôleurs PID numériques, du filtrage du bruit dans les contrôleurs de rétroaction et des défis liés à l'approximation des termes intégraux et dérivés.