Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Couvre les méthodes Monte Carlo, la réduction de la variance et le contrôle optimal stochastique, explorant les techniques de simulation, l'efficacité et la dynamique d'investissement.
Explore l'intégration Monte-Carlo pour approximer les attentes et les variances à l'aide d'échantillonnage aléatoire et discute des composants d'erreur dans les modèles de choix conditionnel.
Explore Markov Chain Monte Carlo pour l'échantillonnage des distributions haute dimension et l'optimisation des fonctions à l'aide de l'algorithme Metropolis-Hastings.