Couvre l'algorithme Metropolis-Hastings et les approches basées sur les gradients pour biaiser les recherches vers des valeurs de vraisemblance plus élevées.
Explore linférence de vraisemblance maximale, comparant les modèles basés sur les ratios de vraisemblance et démontrant avec un exemple de pièce de monnaie.
Explore les modèles de mélange, y compris les mélanges discrets et continus, et leur application dans la capture de l'hétérogénéité du goût dans les populations.