Discute de la série Laurent et du théorème des résidus dans l'analyse complexe, en se concentrant sur les singularités et leurs applications dans l'évaluation des intégrales complexes.
Couvre la transformée de Fourier, ses propriétés, ses applications dans le traitement du signal et les équations différentielles, en mettant l'accent sur le concept de dérivées devenant des multiplications dans le domaine des fréquences.
Explore la résolution du problème Poisson en utilisant la transformée de Fourier, en discutant des termes sources, des conditions aux limites et de l'unicité de la solution.
Couvre la transformée de Fourier, ses propriétés et ses applications dans le traitement du signal et les équations différentielles, démontrant son importance dans l'analyse mathématique.