Explore la compacité, la continuité et les espaces de quotient en topologie, en mettant l'accent sur la topologie des lignes en R2 et les propriétés des ensembles compacts.
Explore les séquences de tours, les homomorphismes et leurs applications en topologie, y compris le calcul de l'homologie et la construction de télescopes.
Couvre les propriétés et les structures des catégories de modèles, en mettant l'accent sur les factorisations, les structures de modèles et l'homotopie des cartes continues.