Explore l'entropie, le caractère aléatoire et la quantification de l'information dans l'analyse des données biologiques, y compris les neurosciences et la prédiction de la structure des protéines.
Plonge dans la quantification de l'entropie dans les données de neurosciences, explorant comment l'activité neuronale représente l'information sensorielle et les implications des séquences binaires.
Introduit des variables aléatoires et leur signification dans la théorie de l'information, couvrant des concepts tels que la valeur attendue et l'entropie de Shannon.
Explore les promenades aléatoires, le modèle Moran, la chimiotaxie bactérienne, l'entropie, la théorie de l'information et les sites en coévolution dans les protéines.
Plonge dans l’entropie des données neuroscientifiques et de l’écologie, explorant la représentation de l’information sensorielle et la diversité des populations biologiques.
Explore le concept dentropie comme le nombre moyen de questions nécessaires pour deviner une lettre choisie au hasard dans une séquence, en soulignant sa pertinence durable dans la théorie de linformation.