Couvre le calcul intégral multivariable, y compris les cuboïdes rectangulaires, les subdivisions, les sommes du Douboux, le théorème de Fubini et l'intégration sur des ensembles délimités.
Couvre les propriétés des espaces complets, y compris l'exhaustivité, les attentes, les incorporations, les sous-ensembles, les normes, l'inégalité de Holder et l'intégrabilité uniforme.
Introduit des concepts de calcul, en se concentrant sur les séries et intégrales de Taylor, y compris leurs applications et leur signification en analyse mathématique.