Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
S'insère dans la dualité entre les intervalles de confiance et les tests d'hypothèses, soulignant l'importance de la précision et de l'exactitude dans l'estimation.
Couvre l'estimation des points, les intervalles de confiance et les tests d'hypothèses pour les fonctions lisses à l'aide de modèles mixtes et de lissage des splines.
Explore le phénomène Stein, présentant les avantages du biais dans les statistiques de grande dimension et la supériorité de l'estimateur James-Stein sur l'estimateur de probabilité maximale.