Déplacez-vous dans des modèles générateurs basés sur les scores, explorant les distributions naturelles d'apprentissage et l'impact de l'architecture de réseau neuronal sur la robustesse.
Fournit une vue d'ensemble de l'apprentissage par renforcement, en se concentrant sur le gradient de politique et les méthodes critiques des acteurs pour les réseaux de neurones artificiels profonds.
Compare les réseaux profonds avec les réseaux peu profonds dans les réseaux de neurones artificiels et l'apprentissage profond, en explorant les raisons de leurs différences de performance.
Explore la méthode de fonction aléatoire pour résoudre les PDE à l'aide d'algorithmes d'apprentissage automatique pour approximer efficacement les fonctions à haute dimension.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Explore la prévision des trajectoires dans les véhicules autonomes, en mettant l'accent sur les modèles d'apprentissage profond pour prédire les trajectoires humaines dans les scénarios de transport socialement conscients.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.