Explore les progrès de l'IA générative et de l'apprentissage par renforcement, en se concentrant sur leurs applications, leur sécurité et leurs futures orientations de recherche.
Couvre les concepts fondamentaux de l'apprentissage profond et de l'architecture Transformer, en se concentrant sur les réseaux neuronaux, les mécanismes d'attention et leurs applications dans les tâches de modélisation de séquence.
Couvre les faits stylisés du rendement des actifs, des statistiques sommaires, des tests de la normalité, des placettes Q-Q et des hypothèses de marché efficaces.
Se penche sur les défis de l'apprentissage profond, en explorant la dimensionnalité, les performances et les phénomènes sur-adaptés dans les réseaux neuronaux.
Introduit Q-Learning, Deep Q-Learning, l'algorithme REINFORCE et Monte-Carlo Tree Search dans l'apprentissage par renforcement, aboutissant à AlphaGo Zero.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Explore la méthode de fonction aléatoire pour résoudre les PDE à l'aide d'algorithmes d'apprentissage automatique pour approximer efficacement les fonctions à haute dimension.