Fournit une vue d'ensemble des techniques d'interpolation polynomiale en analyse numérique, en se concentrant sur les méthodes d'interpolation et d'estimation des erreurs de Lagrange.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Couvre la résolution numérique des débits d'eaux souterraines à l'aide d'éléments finis et souligne l'importance de la discrétisation spatiale et temporelle.