Couvre les données neurosciences hétérogènes, les techniques comme les microarrays et le séquençage des gènes, l'intégration des données, et l'importance des métadonnées dans l'organisation et le partage des données.
Présente une démo sur la virtualisation adaptative des données dans SmartDataLake, mettant l'accent sur l'assemblage de profils d'entreprise et l'exécution de requêtes de joint à travers les ensembles de données.
Discute des techniques avancées d'optimisation Spark pour gérer efficacement les Big Data, en se concentrant sur la parallélisation, les opérations de mélange et la gestion de la mémoire.
Offre une introduction complète à la science des données, couvrant Python, Numpy, Pandas, Matplotlib et Scikit-learn, en mettant l'accent sur les exercices pratiques et le travail collaboratif.
Introduit les principes fondamentaux du traitement des données, soulignant l'importance des Pandas et de la modélisation des données pour une analyse efficace.
Explore la virtualisation des données dans le projet SmartDataLake, couvrant l'optimisation des requêtes, le niveau de stockage et les défis dans le traitement de données hétérogènes.