Modèles de séries chronologiques : Processus autorégressifs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'analyse et la modélisation des séries chronologiques univariées, en mettant l'accent sur la stationnarité, les processus ARMA et la prévision.
Explore l'estimation paramétrique, les processus intégrés, la modélisation saisonnière et la construction de modèles ARIMA dans l'analyse des séries chronologiques.
Couvre l'estimation paramétrique, la modélisation saisonnière, les méthodes Box-Jenkins, les calculs de variance et les mesures de dépendance dans l'analyse des séries chronologiques.
Explore l'analyse de séries chronologiques multivariées, la cointégration, la prévision avec les modèles ARMA, et les applications pratiques dans l'analyse des taux d'intérêt.
Explore l'analyse de séries temporelles univariées, couvrant la stationnarité, les processus ARMA, la sélection des modèles et les tests unitaires de racine.
Couvre les propriétés stochastiques des séries temporelles, de la stationnarité, de l'autocovariance, des processus stochastiques spéciaux, de la densité spectrale, des filtres numériques, des techniques d'estimation, du contrôle des modèles, de la prévision et des modèles avancés.
Couvre les modèles de données de comptage et la régression de Poisson, puis les transitions vers une analyse univariée des séries chronologiques pour la prévision des variables économiques.