La sécurité des dispositifs IoT : risques dans l'ère IoT
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les défis de classification d'images, les concepts d'apprentissage automatique, la régression linéaire et l'approche voisine la plus proche dans les véhicules autonomes.
Explore les applications de l'IA dans le marketing, le service à la clientèle, le recrutement, la gestion financière, les arts, les marchés du travail, la surveillance sur le lieu de travail et l'éducation médicale.
Couvre la modélisation de la menace dans l'apprentissage profond pour les véhicules autonomes, en mettant l'accent sur la défense contre les exemples contradictoires et les portes arrière.
Couvre les bases de l'apprentissage de renforcement, y compris l'apprentissage d'essai et d'erreur, l'apprentissage Q, le RL profond, et les applications dans le jeu et la planification.
Explore l'apprentissage profond pour les véhicules autonomes, couvrant la perception, l'action et les prévisions sociales dans le contexte des technologies de capteurs et des considérations éthiques.
S'insère dans le compromis entre la complexité du modèle et le risque, les limites de généralisation, et les dangers d'un ajustement excessif des classes de fonctions complexes.
Explore les agents d'apprentissage profond dans l'apprentissage du renforcement, en mettant l'accent sur les approximations du réseau neuronal et les défis dans la formation des systèmes multiactifs.