Explore l'analyse de régression, la modélisation cinétique, l'estimation des paramètres et la modélisation de la concentration d'ozone atmosphérique à l'aide de relations linéaires et de diagrammes de dispersion.
Introduit une analyse de régression pour la modélisation de données multivariées, couvrant l'algèbre matricielle, l'interprétation des coefficients et les intervalles d'essai.
Explore la régression linéaire probabiliste et la régression de processus gaussien, en mettant l'accent sur la sélection du noyau et l'ajustement hyperparamétrique pour des prédictions précises.
Explore une régression robuste dans l'analyse des données génomiques, en mettant l'accent sur la pondération des résidus importants pour une meilleure précision des estimations et des mesures d'évaluation de la qualité telles que NUSE et RLE.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.